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Abstract— In the public transportation system, punctuality
benefits both bus operation and passengers’ travel experience.
However, uncertainty exists due to complex traffic conditions
and heterogeneous driving behaviors. To analyze bus opera-
tional uncertainty, transport planners and bus operators need
a tool that supports multi-granular modeling, spatio-temporal
representation, and interactive exploration. To meet the require-
ment, we present MetroBUX, a visual analytics system for Bus
operational Uncertainty eXploration. MetroBUX aligns daily
bus trips and models stop-level uncertainty of bus arrival
time. It has a consolidated interface with three main views:
Map View for presenting the spatial distribution of uncertainty,
Temporal View for tracking the evolution of uncertainty, and
Trip View for inspecting uncertainty propagation. Specifically,
MetroBUX enables integrated spatio-temporal analysis by con-
necting topological uncertainty distribution at different periods
in a nested tracking graph. Furthermore, it supports interactive
and hierarchical exploration, including region-, route-, trip-, and
stop-level analysis. Case studies on real-world bus operational
data and domain experts’ feedback demonstrate the efficiency of
MetroBUX.

Index Terms— Bus operation, uncertainty modeling, uncer-
tainty visualization, topology analysis, visual analytics.

I. INTRODUCTION

PUBLIC transit plays an essential role in modern cities by
providing commuters with an efficient and eco-friendly
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travel option. The bus system is a commonly used travel mode
in multi-modal public transit systems [1], [2]. However, bus
operation is volatile due to the dense bus network and mixed
traffic environment with other vehicles. Ideally, the bus system
should work as the pre-planned schedule to achieve maximum
efficiency. But in realistic circumstances, bus operation always
suffers from serious uncertainty which results in service
inefficiency such as bus bunchings [3], [4]. Analyzing bus
operational uncertainty can help domain experts to understand
bus bunching and optimize the operation schedule. Neverthe-
less, complex traffic conditions pose a multitude of difficulties
in the analytics of bus operational data. First, the phenomenon
of bus bunching is observed to be stochastic in the real world.
Ideally, bus operation shall follow the planned timetable or
schedule, i.e., punctuality. However, unforeseen circumstances
like traffic accidents and passenger demand fluctuation widely
exist, causing variations in bus arrival time and inregualarity
of bus operations [5]. Second, it is evident that bus bunching
happens in a variant of spatial and temporal dimensions [6],
[7], [8]. The analytics tool needs to capture the spatio-temporal
dynamics of bus operation, to help users identify when and
where bus bunching may happen. Moreover, it is observed that
heterogeneous driving behaviors cause travel time variations,
even in the same route [9], [10]. As such, the analytics tool
needs to support fine-grained analysis of bus operational data,
allowing users to examine and compare different routes and
stops in a public transit system.

Transportation researchers have made significant progress
in improving bus operation through the use of comprehen-
sive models [7], [8], [11] and deep-learning techniques [3],
[12], [13]. Commercial products like INIT1 and analytics
platform like JP-DAP [14] offer dashboards to assist for
the monitoring of bus operation. However, these solutions
often lack the interactive analysis capabilities, which are
crucial for meeting traffic operators’ needs. Visual analytics
that enables iterative, interactive and dynamic integration
of human intelligence and data analysis, becomes a popu-
lar approach in intelligent transportation systems [15], [16],
[17]. Many visual analytics systems have been developed
for exploring passenger commuting data by public trans-
portation (e.g., [18], [19], [20], [21], [22]). The systems
enhance the understanding of mobility or place connect-
edness via public transit, yet few are designed to assess
bus operation variations systematically. On the other hand,
some studies assess trip-level delay uncertainty, and suggest
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visual designs to assist personal trip planning [23], [24].
However, these visual designs can not fulfill the requirements
of domain experts in examining bus operational data, in a
systematical manner considering spatial, temporal, and route-
wise variations.

To overcome the above challenge, we present MetroBUX,
a visual analytics system for exploring bus operational uncer-
tainty. In the system, we model the stop-level uncertainty
(Sec. IV) and derive the density contour through Kernel
Density Estimation (KDE) (Sec. V-A). Then we employ
the Reeb graph to model the topological structure and the
Hilbert curve [25] to measure the spatial relationship between
contours, thus the evolution of uncertainty distribution can
be derived (Sec. V-B)). At last, several elaborately designed
visualizations are integrated into a multi-view interface with
flexible interactions to facilitate detail-oriented exploration of
arrival time uncertainty (Sec. VI). We comprehensively eval-
uate the efficiency of MetroBUX in meeting the requirements
of spatio-temporal and hierarchical (including region-, route-
, trip-, and stop-level) analysis, with three case studies and
expert feedback (Sec. VII).

In general, the contributions of our work are threefold:
• Multi-granular uncertainty modeling. We extract

stop-level uncertainty from the fluctuation of arrival
times in bus operational data, which are used to com-
pute region-level uncertainty distribution over space, and
derive nested uncertainty contours.

• Integrated spatio-temporal visualization. We leverage
and improve the nested tracking graph for integrated
spatio-temporal visual representation, and design a
multi-view interface incorporating dedicated visual and
interaction designs to support hierarchical analysis of
uncertainty in the region-, route-, and stop-levels.

• Insightful evaluations. We conduct three case studies on
real-world scenarios and reveal new insights including
spatio-temporal variations of uncertainty, tidal phe-
nomenon, and stop-level uncertainty reasoning. Experts’
feedback also confirms “user-friendly” visual & inter-
action design as well as “versatile” applicability of
MetroBUX.

II. RELATED WORK

A. Bus Operation

Bus scheduling aims to achieve an optimal balance among
various factors, including passenger demand [7], operating
expenses [11], optimal route design [26], [27], and wait-
ing time [8]. However, most approaches are susceptible to
specified factors that only consider a subset of circum-
stances. To mitigate the uncertainty of bus arrival time
and to improve public transit service, recent works leverage
deep-learning techniques with historical bus operational data
for bus arrival time prediction [3], [13]. However, these
data-driven approaches also face challenges, including biased
data collection, unpredictable traffic conditions, and heteroge-
neous driving behaviors.

Preliminary efforts have been made to investigate bus oper-
ational data with visual analytics. Palomo et al. [19] depicted

train schedule by combining KDE with a graphical approach,
allowing users to inspect and compare spatio-temporal patterns
in transportation services. Weng et al. [20] developed BNVA,
allowing users to inspect bus route networks and evaluate
route candidates. Barabino et al. [5] introduced methods for
the measurement of “inregularity” in transit services, which
can be helpful for the identification of underlying causes.
Zhao et al. [28] designed a knotted visualization method to
present uncertainty information about public transit to support
intelligent transit scheduling. However, these systems focus
on one or several routes, failing to provide an overview of
when and where bus operation is deficient. To mitigate the
gap, we develop a hierarchical analytical framework assembled
with region-, route-, trip- and stop-level analysis.

B. Urban Traffic Visualization

Understanding bus operation requires spatial and tempo-
ral analytics of bus operational data simultaneously, which
has been comprehensively studied in urban traffic visu-
alization [15], [16], [29], [30], [31], [32]. The widely
used approaches include space-time cube framework (e.g.,
[33], [34]), density map (e.g., [22], [35]), linear cartogram
(e.g., [36], [37]), and space-time transformation (e.g., [38],
[39], [40]). All the approaches have certain limitations, such as
increased navigation complexity in 3D for the space-time cube,
map distortion for the cartogram, and reduced spatial informa-
tion for the space-time transformation. The problem becomes
more complex when the movements are constrained in the
road network, which further requires depicting the underlying
graph structure. A straightforward solution is to broaden the
route in a map and embed the visualizations into the route [41].
However, this approach is cumbersome when the number of
routes becomes large. Alternatively, novel visualizations that
seamlessly integrate network information can be designed,
such as bristle maps [42], and topology density map [22].
Coordinated views [43] are another strategy to support the
visual exploration of traffic data, with different views present-
ing spatial and temporal patterns, respectively. For example,
Zeng et al. [44] adopted space-time transformation for travel
time visualization, complemented with an isochrone map for
depicting spatial information. Advanced topological analysis
(e.g., [45], [46]) and interaction (e.g., [18], [47]) methods can
also be applied to facilitate visual exploration.

To the best of our knowledge, no visual analytics has been
dedicated to uncertainty exploration in bus operation, which
is essential for transportation planners and service providers
in decision-making. To fill the gap, MetroBUX is designed to
help domain experts explore bus operation uncertainty.

C. Uncertainty Visualization

Uncertainty exists inevitably in all stages of the analysis
pipeline, including data acquisition, transformation, and visu-
alization [48], [49]. Despite the diverse types and sources of
uncertainty, uncertainty visualization can be generally catego-
rized as add glyph, add/modify geometry, animation, etc. [48].
Some goal-directed visualization attempts to incorporate the
underlying uncertainty for conveying more transparent data,
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thus decreasing the possibility of false decision-making [50].
The visualization community has designed uncertainty visu-
alization tools for almost all application contexts, such as
geodemographics [51], multidimensional projection [52], and
hurricane prediction [53].

MacEachren et al. [54] summarized general strategies for
uncertainty visualization in geospatial information: static rep-
resentations such as iconography, visual variable coding, and
their combinations; and dynamic representations including
animated, sonic, and interactive ones. They outlined that
understanding how knowledge of information uncertainty
affects decision-making is a fundamental research challenge
for uncertainty visualization. Gschwandtnei et al. [55] com-
pared six different visual encodings of visualizing temporal
uncertainty and reconfirmed that the best proper visual encod-
ing depends on the task. Specifically, in the context of
transportation, Kay et al. [24] investigated what type of
uncertainty representation can produce reasonable judgment
when taking the bus. They suggested using a dotplot to present
probability distributions in a discrete way, whose variance is
1.15 times smaller than the density plot. Wunderlich et al. [23]
proposed a visual design that depicts train trip planning with
expected delay uncertainty and the potential impact of missing
a transfer.

The exploration of bus operation uncertainty is complex as it
involves multi-perspective analysis: spatial variation, temporal
evolution, and route propagation. To address this challenge,
we opt for KDE to provide an overview of uncertainty distri-
bution over space, which has been widely applied in hotspot
detection [45], [56] and POI analysis [22] that rely on the
identification of high scalar values in a geographical space. On
this basis, we further opt for nested tracking graph (NTG) [57],
[58] to examine the evolution of uncertainty density at differ-
ent levels over time, which has been successfully demonstrated
in examining spatial data changes over time. Our interface also
features a graphical schedule view for route-level comparison.

III. REQUIREMENT ANALYSIS AND SYSTEM OVERVIEW

This section first introduces the requirements distilled from
a collaboration with a transportation researcher (Sect. III-A),
followed by an overview of the system (Sect. III-B).

A. Requirement Analysis

In the past ten months, we worked closely with a researcher
(CR) with over 10 years of experience in public transport
planning and operation. The CR mentioned that the latest deep
learning approaches have improved prediction accuracy, but
usually rely heavily on the training data and fail to capture
dramatic variations. Understanding the variations can help
domain experts analyze the failure of the prediction models
in extreme cases and optimize the bus schedule.

In the first phase of the collaboration, we conducted several
runs of semi-structured interviews with the CR to formulate the
detailed design requirement. During the discussion, we mod-
eled the variation of bus arrival time as uncertainty (Fig. 2
(b)) and aimed to develop a visual analysis system to explore

Fig. 1. Overview of the workflow, which mainly consists of data processing
and interactive visualization and analysis stages.

the bus arrival time uncertainty from the bus operational data.
The detailed analysis requirements are listed as follows:
R1: Multi-granular Uncertainty Modeling. To facilitate

the in-depth exploration of bus operational data, the sys-
tem needs to provide uncertainty modeling at multiple
granularities, including the stop- (R1.1) and region-level
uncertainty (R1.2).

R2: Integrated Spatio-temporal Uncertainty Representa-
tion. Traffic conditions and travel demands vary over
space and time in a city. CR requests to get an intuitive
visual representation of uncertainty distribution over
space to locate regions of high uncertainty (R2.1), and
evolution of uncertainty over time to identify periods of
high uncertainty (R2.2).

R3: Adequate Auxiliary Information. The system should
provide rich auxiliary information to help users under-
stand and reason the uncertainty patterns revealed from
the visualizations. Specifically, the basic information
(ID, name) and statistics of bus stops, routes (R3.1), and
trips (R3.2) should be visualized to assist the analysis of
spatial-temporal uncertainty.

R4: Effective User Interaction and Cross-view Linkage.
CR expects effective user interactions to support interac-
tive exploration of bus operation uncertainty. The system
should support the selection of region, route, trip, and
stop of interest in different views (R4.1). Moreover,
when using the system, the users always need to switch
their attention among different views, thus the related
visual elements in different views should be linked to
make the interactive exploration easy (R4.2).

B. System Overview

We develop MetroBUX, a web-based visual analytics system
which comprises two major phases: 1) data processing, and
2) interactive visualization & analysis, as illustrated in Fig. 1.
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In the data processing phases, the raw data including
route information and operational data are cleaned where
duplicates are removed and missing values are filled. Then
we perform the trip alignment and uncertainty modeling to
get the stop-level uncertainty (R1.1) which will be passed to
the next phase for in-depth analysis.

In the interactive visualization & analysis phase, the sys-
tem provides several coordinated views to support flexible
interactive exploration. All the routes are shown in Route
List view which depicts route ID, direction, number of daily
trips, frequency histogram, and headway information for each
route (R3.1). Users can select a route of interest from Route
List view and examine the details of the frequency histogram
and headway information in the Trip View (R3.2). Based
on the stop-level uncertainty, MetroBUX models region-level
uncertainty distribution using kernel density estimation (R1.2),
which is presented in the Map View (R2.1). We conduct a
topological analysis on the derived contours at each time and
connect the topology at different times in a nested tracking
graph as in the Temporal View (R2.2). The Temporal View
intuitively presents the uncertainty evolution over one day and
allows users to examine detailed uncertainty distribution at a
specific time range by dragging the time slider. Users can also
zoom/pan the Map View, and the nested tracking graph will
be updated accordingly (R4.1, R4.2). Map View and Temporal
View work in an integrated manner to support spatial and
temporal analysis simultaneously (R4.2).

IV. DATA PROCESSING

In this section, we first give a brief introduction of the input
data (Sec. IV-A), followed by the description of data cleaning
process (Sec. IV-B) and trip alignment and uncertainty mod-
eling (Sec. IV-C.2).

A. Input Data

The data we used in our system include the stop dataset,
route dataset and operational dataset, as follows:
Stop dataset includes the information of all bus stops. Each
stop is represented as a triplet: s :=< stop I D, lat, lon >,
where lat, lon specify the geographical coordinates of a given
bus stop s, respectively. There are in total 1226 bus stops in
the dataset.
Route dataset includes the information of bus routes. Each
bus route is presented as R :=

{
s R

i
}|SR |

i=1 , where i indicates the
index of bus stops along the route, while |SR | indicates the
total number of bus stops in operation. s R

1 and s R
|SR |

are the
starting and ending terminals, respectively. It’s worth noting
that several bus routes may pass the same stop, and bus
operations are variant for different routes at the same stop.
In this study, the route dataset consists of 92 bus routes.
Operational data include the daily bus operation data that
record the times a bus arrives at and leaves a bus stop. Each
record includes route ID, stop ID, location, type and arrive
time, where location indicates geographical coordinates to
collect this record; type indicate direction of the bus, and
arrive time is the time arriving at the stop. Since a bus route
is typically served by several buses, we can connect multiple

Fig. 2. Bus trips across multiple days are aligned via clustering (a), which
are then are used for stop-level uncertainty modeling (b).

logs at different stops but with the same bus ID within a
reasonable time period as a bus trip (Fig. 2 (a)). Note that
bus drivers may choose not to stop at a bus stop if there
is no waiting or alighting passenger, yielding missing values
at certain stops. Hence, we fill in the missing values before
the followup analyses. The static stop and route information
and dynamic bus operational data are jointed using conjunct
features of route ID, stop ID, and type.

B. Data Cleaning

Automatically collected data often exhibits quality issues
that compromise its consistency, a challenge widely acknowl-
edged in existing literature [59], [60]. These inconsistencies
may arise from various factors, such as sensor instability,
weak location signals, or errors committed by bus operators.
To address these issues, we categorize data inconsistencies
into three main types: duplicated records, abnormal data, and
missing data. Initially, we eliminate duplicate records (i.e.,
two close arrival times of the same bus ID at the same route
and stop). Next, we filter out outliers such as the irrational
departure times at the starting stop or one single recorded
arrival time for a particular bus ID within one-hour window.
After that, we arrange the remaining arrival times in order
of their corresponding stops along each route. Arrival times
linked by a common bus ID within a predefined time window
are grouped and treated as a single bus trip. With a given trip,
arrival times are missing when drivers do not stop by a bus
stop. To model the uncertainty of all stops, we fill out the
missing arrival times via linear interpolation.

C. Trip Alignment and Uncertainty Modeling

1) Trip Alignment: After connecting bus trips and complet-
ing the missing values, we further align bus trips spanning
different days to model bus operation uncertainty. We use
attribute trip order (denoted as tr ) to indicate the order of
a bus trip in one day, which is assigned according to the
departure time of a bus trip at the starting terminal. Most bus
trips in the operational data exhibit regular departure intervals,
for which the trip orders can be assigned directly. However,
certain bus trips have close departure times, which happens
when the drivers start the engine earlier but do not leave the
starting terminal. In such cases, we measure differences in
arrival times between these uncertain trips and those certain
trips on the other days at all stops along the route. The trip

Authorized licensed use limited to: The Hong Kong University of Science and Technology (Guangzhou). Downloaded on August 26,2024 at 15:40:19 UTC from IEEE Xplore.  Restrictions apply. 



XIAO et al.: MetroBUX: A TOPOLOGY-BASED VISUAL ANALYTICS 5529

with the minimum difference is selected and assigned the trip
order.

2) Uncertainty Modeling: With the trip alignment,
we derive a list of bus arrival times at a stop s for a bus
trip with trip order o spanning over one month, denoted
as Ts,o =

{
t1
s,o, t2

s,o, · · · , tm
s,o

}
, where m is the max index

of day (i.e., 30 in this work). An arrival time t i
s,o can

be affected by factors like traffic and weather conditions,
passenger demands, and driving behaviors. The arrival times
at different days do not affect each other, hence t i

s,o and
t j
s,o are independent variables. According to the central

limit theorem, the probability of bus arrival times will
closely approximate as a normal distribution. To validate this
assumption, we randomly select 10 Ts,o and compare the
values in Ts,o with theoretical values in normal distribution
using a quantile-quantile plot. An example is shown in Fig. 2
(b-top). The linearity of the points in the plot suggests the
proximity of theoretical and data distributions. Hence, the
assumption that Ts,o follows the N (T s,o, σs,o), where T s,o is
mean value and σs,o is standard deviation of the arrival times.

Next, we model stop-level uncertainty based on historical
bus operational data (R1.1). This work regards uncertainty as
the extent of deviation from normal arrival time, a form of
statistical uncertainty that calculates a numeric range with the
likelihood of containing the target value determined by the
model and the confidence associated with it [61]. We have high
confidence that the arrival time will fall in the range [T s,o −

σs,o, T s,o + σs,o]. Empirically, we find that the range will not
cause overlapping issues between consecutive trips. As such,
we set uncertainty of bus arrival times as σs,o, as illustrated
in Fig. 2 (b-bottom).

However, trip orders between different bus routes are dis-
tinct due to varying departure frequencies. To compare arrival
times among bus routes, we group arrival time uncertainty at
each time interval 1T (30 minutes in this work), and measure
the average uncertainty. In this way, we generate a list of
uncertainty values for each bus stop s over one day, denoted
as

{
σ

1T1
s , σ

1T2
s , · · · , σ

1Tk
s

}
, where k is a fixed number for all

bus routes. Our approach involves aggregating data for all bus
routes at each stop, instead of focusing on individual route-stop
pairs. This choice is rooted in the fact that spatial modeling
of bus operation uncertainty is undertaken with a focus on
uncertainty values rather than stop density, for which we adopt
adaptive bandwidths to alleviate the effect by stop density.
Computation per route-stop pair would further introduce the
effect by route frequency, and cause potential increase in
computational load during the KDE process (Sec. V-A.1).
Another advantage of aggregating by stop is its capability to
handle situations where specific bus routes have low-frequency
service, especially at suburban stops during night-time hours.
In this way, we can improve the identification of pronounced
uncertainty patterns, particularly those related to punctuality
issues, for suburban stops.

V. SPATIO-TEMPORAL UNCERTAINTY REPRESENTATION

After modeling stop-level uncertainty, we employ kernel
density estimation for regional uncertainty modeling (R1.2)

Fig. 3. Dividing uncertainty values into three intervals. (a) measure
uncertainties for each time bin, (b) sort uncertainties in decreasing order,
(c) divide them based on the biggest difference.

and visual representation (Sec. V-A). We further employ a
nested tracking graph to represent the evolution of uncertainty
over time (Sec. V-B).

A. Spatial Modeling and Representation

1) Kernel Density Estimation: As a non-parametric
approach, KDE is a compelling method to evaluate density
probability at interactive rates. Given a set of virtual bus
stops S = {si }

n
i=1, where each stop si has a list of arrival

time uncertainty
{
σ

1Ti
s

}k

i=1
. With a given time interval 1T ,

we measure the regional uncertainty distribution at arbitrary
spatial location x as:

ρ(x ∈ R2
|t = 1T ) =

∑
si ∈S

σ1T
si

h(si )
K

(
||pos(x) − pos(si )||

h(si )

)
,

(1)

where K denotes Gaussian kernel, || · || represents the
Euclidean distance between two stops, and h(si ) is a function
for adjusting bandwidth based on si . Conventional KDE uses
a fixed bandwidth for all the sampling points, for which both
the stop density and uncertainty values will contribute to the
uncertainty density estimation. However, in this work, we are
more interested in the uncertainty values than the stop density
over space. As such, we adopt an adaptive bandwidth inspired
by [62], as follows:

h(si ) = h × f (si ), (2)

where h(si ) is the bandwidth that corresponds to a spatial
distance. f (si ) = |{s | ||pos(s) − pos(si )|| < h, s ∈ S}|

counts stops falling in a circle with si as a center and h as
a radius, which increases as h increases. In this way, we can
differentiate each stop’s uncertainty density contribution and
mitigate the artificial impact by stop density. Large h tends
to over-smooth the density distribution, whilst small h yields
many small fragmented regions. Fig. 4 shows a comparison of
Map View and Temporal View generated by our adaptive band-
width (top) and fixed bandwidth (bottom). Fixed bandwidth
may generate some outliers, among which a notable one is the
area at 12:00 marked in red (bottom-right), corresponding to
Shenzhen North station, one of the busiest areas in Shenzhen.
Due to the limited number of bus stops within this area, density
map by KDE using fixed bandwidth exhibits small fragmented
regions that are isolated from the other regions. This can
lead to mistakenly-perceived low level of uncertainty in the
red area, whilst the region exhibits significant uncertainty in
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Fig. 4. Comparing Map View and Temporal View generated by adaptive
(top) and fixed (bottom) bandwidth. Fixed bandwidth can cause many small
fragmented regions as in the red area.

reality. Our adaptive bandwidth can effectively address the
problem, as shown in the top-right.

After consulting with the expert CR, we set a default
bandwidth of 1000m which keeps a balance between too
many fragmented and over-smoothing regions as a rule of
thumb. Alternatively, users can examine and compare effects
of different bandwidths using a bandwidth slider overlaid on
the Map View (see Fig. 7 (d)). Moreover, conventional KDE
computation with a fixed screen length as the bandwidth
suffers from dramatic changes in density maps after zoom
operations [63]. To alleviate the issue, we adjust the bandwidth
by anchoring the bandwidth with a fixed distance when users
zoom in/out on the map.

2) Contour Topology: Heatmap based on KDE is the most
commonly used method to present the spatial distribution of
bus operation uncertainty (R2.1) KDE computes uncertainty
density distribution over space at a specific time interval.
On this basis, one can visualize and compare uncertainty
densities at different time intervals. However, using a fixed
color mapping for all time intervals will introduce bias, as the
minimum and maximum uncertainty values at different time
intervals can vary significantly, particularly for peak vs. non-
peak hours. Moreover, the density map adopts a continuously
changing colormap with gradient blue, posing a threat of
ambiguous interpretation of choropleth border. To enable
consistent uncertainty comparison and remove the potential
bias of the choropleth border, we further incorporate several
highlighted isolines sampled from the blue contours in density
maps. The sample strategy is based on the elbow method [64],
which is a heuristic for finding the optimal threshold by
locating the point with a sharp drop.

As illustrated in Fig. 3, we first divide a day into 48 time
bins and measure average uncertainty in each time bin, then
sort the uncertainty values in decreasing trend. The value with
largest difference between the uncertainty values, indicating
the severity of uncertainty, would be set as critical points.
Following this criteria, we get three intervals: low interval is
[0, 185]; medium level is [185, 370]; high level is [370, max],
which are accordingly denoted as L := {llow, lmedium, lhigh}.
The levels are encoded by three-class OrRD sequential colors

Fig. 5. Illustration of density map and the highlighted contours in 3D (a).
All points on the 2D map can be mapped onto a 1D space using Hilbert curve
(b) rather than positions along y-axis (c), with region sizes reflected as the
length of the line segments.

from orange to red, as shown in Fig. 5 (a). We further
derive a topological structure from the contours on the map
using the Reeb graph. The right of Fig. 5 (a) illustrates the
corresponding topological structure of the contours shown in
the left density map. These conspicuous isolines distinguish
the value divergence in the uncertainty density field and
enhance identifying the shape and size of regions with specific
uncertainty density ranges.

B. Temporal Representation

Besides the spatial representation of arrival time uncertainty
at a specific time interval, we also need to present the evolution
of uncertainty along a temporal dimension (R2.2). Such a view
requires addressing three sub-tasks: 1) mapping spatial space
(2D) to temporal space (1D), 2) tracking the evolution of high-
uncertainty regions, and 3) revealing the uncertainty density
of different levels.

1) Mapping Mechanism: To associate uncertainty in spatial
and temporal dimensions, an imperative step is needed to
appropriately transform the geographical location into 1D
space, such that the density distributions among different time
intervals can be connected via nested tracking graph. We distill
the problem into a projection from 2D pairs of latitude and
longitude to 1D space. The intuitive way is to directly map a
spatial location by only longitude and latitude as depicted in
Fig. 5 (c). However, this method can only reveal the distance
information of one direction and ignore the other one. To better
preserve the spatial distance, we leverage Hilbert curve (Fig. 5
(b)) that traverses every point in a given graph and keeps
them in a closed loop. Hilbert curves are drawn precisely by
connecting these cells to a completed line, which means for
any coordinate (x, y) in unit square [0, 1]

2, there is always a
corresponding point in unit line segment [0, 1].

As shown in Fig. 5 (b), the curve ranging from the start
point (green) to the end point (red), is about to fill up the
map. The line on the right is the straightened Hilbert curve
corresponding to the one on the map, which is a finite line
whose length equals the number of pixels in the map view
since we constrain the minimum unit of a single pixel. Take
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Fig. 6. Illustration of uncertainty evolution from 17:30 to 18:30 using nested tracking graph (a). Corresponding map views at 17:30, 18:00 and 18:30 are
shown in (b), (c) and (d), respectively.

Fig. 5 as an instance, where several regions of different
uncertainty levels are integrated to form T opology := [[A1 →

[[A2 → A3], B2], [C1 → C2]], which has two nesting trees.
We denote each region within a certain uncertainty as a node
there. Specifically, the mapping algorithm can be summarized
as follows. For each nesting tree, we first abstract the nodes
N with nested order of mapping through Depth First Search
(DFS). The properties of exploring as far as possible and
backtracking along each branch enable us to traverse branches
with nested structures one by one. In addition, we notice
that the points of highest uncertainty are the same within the
same branch. To alleviate the redundant computation, we only
consider the root , including the root of the tree and the first
node of new branches, which are the conclusive factors to
decide the point. For instance, when dealing with the first
tree, we get the order that {A1 → A2 → A3 → B2}, which
traverses a deeper branch firstly and then backtracks to another
branch from crossing region A2. {A2, B2} are included into set
root because they are determining nodes to locate the mapping
points. Then we map the point of highest uncertainty and
relative region size into the Hilbert curve following the order
of node, respectively. For point projection, we find the point
presenting the highest uncertainty within the region. For region
size projection, we first compute the area of each region of
that level. With the screen size and region size, the proportion
between them is preserved and is simple to transform into
a normalized Hilbert curve with a range of [0, 1]. Accord-
ingly, the region is projected as a line segment depending
on the predetermined point and proportion, as illustrated in
Fig. 5 (b-right). All nesting trees in the T opology will repeat
point projection and region size projection iteratively. Existing
works (e.g., [45]) map 2D geographical contours to 1D axis
directly based on their positions along y-axis (Fig. 5 (c)). This
naive method omits distances along x-axis, causing overlaps
for horizontally faraway contours such as B and C. Instead,
our proposed Hilbert curve can separate them well.

2) Nested Evolution: Two components of uncertainty evo-
lution are fully valued: uncertainty values across multiple
levels within a region, dynamic variation within and between
regions, including spatial movement, region size change, etc.
We leverage the Nested Tracking Graph (NTG) technique to
accomplish these two goals. The nesting hierarchy property
contributes to presenting multi-level uncertainty. Moreover, the

topology structure of NTG can easily capture the dynamic
evolution of uncertainty over time.

As described in Fig. 6, the empirically defined thresholds
for dividing the hierarchy of uncertainty density are encoded
from yellow to orange to red, which show as isolines in
the map view while presented as a nested graph in the
temporal view. Based on such levels L, we can obtain three
main components to construct a nested tracking graph G =

(N , ET , EN ). We follow the notation at Fig. 5 (a) to tag the
nested hierarchical uncertainty as 1, 2, 3, respectively. Each
n ∈ N is a region at given uncertainty levels, for instance,
we can get regions {Ato

1 , Ato
2 , Bto

2 , C to
1 } in Fig. 6 (b). ET

represents the tracking graphs of each level along the temporal
dimension, as the regions {Ato

1 , C to
1 } at 17:30 evolve into

{At1
1 , C t1

1 , Dt1
1 } at 18:00, which are all region above llow of

uncertainty. EN are nesting glyphs of the relationship between
different levels within the same region at the same timestamp,
as {{At0

1 , {At0
2 , Bt0

2 }}, C t0
1 } at 17:30. Since we maintain the

relationship of region sizes during mapping, the width of nlow

is greater than nhigh , allowing us to visualize the hierarchy
with successive levels nested within each other. As the left
of Fig. 6 (a) shows, it is obvious to obtain multiple levels
of uncertainty within the same region of the same timestamp.
By observing the shape of the nested graph at different levels,
we can clearly see when the high-level uncertainty begins and
ends. Also, the relation among different regions is displayed,
including split and merge, which provide valuable clues for
tracking uncertainty from a geographical perspective.

VI. METROBUX INTERFACE

We develop the interface with five coordinated views:
Temporal View and Map View present the general spatial dis-
tribution (R2.1) and temporal evolution (R2.2) of bus operation
uncertainty. Use can further check the detailed uncertainty
evolution along trips through Trip View (R2.2). Moreover, the
auxiliary information is provided through Route List view and
Stop View for users to reason the uncertainty (R3.1).

A. Route List

Route List view, shown as Fig. 7 (b), lists all routes
for users to examine. The view is essentially a table with
rows representing bus routes, and columns containing route
information (e.g., route ID, route type, number of daily trips,
frequency, and headway). Two bus routes sharing the same
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Fig. 7. Interface of MetroBUX system for the input dataset (a). Route List (b) view displays general information of all routes, including route ID, route type,
number of daily trips, frequency, and headway. Temporal View (c) provides an overview of and allows users to explore the evolution of uncertainty over time
interactively. Map View (d) presents region-level uncertainty distribution over space and user-selected bus route. Trip View (e) displays detailed information
of a specific route, including frequency (e1) and trip-level uncertainty information (e2). Stop View (f) displays the finest stop-level uncertainty information of
the selected stops.

route ID but different route types (up vs. down) are grouped
together. Departure frequency is shown in the third field with
barchart. We count the departure frequency of each bus route
in every three hours, then use a word-scale bar chart to show
the frequency histogram in one day. Headway represents the
amount of time between two consecutive bus trips arriving
at a stop. We measure the average headway of all bus stops
along a bus route in every 30 minutes and display the headway
information as a word-scale line chart. From the route list view,
users can select routes of interest for further analysis such as
route comparison. The selected route will be displayed in the
Map View, while more detailed departure frequency and arrival
time information will be displayed in the Trip View.

B. Temporal View

Temporal View (Fig. 7 (c)) incorporates the nested tracking
graph to show the uncertainty evolution with time (R2.2). We
opt for three levels for the uncertainty contours, represented
as three-class OrRD sequential discrete colors. The view also
allows users to select a particular time period (R4.1), by drag-
ging or clicking on the time slider to select the time period
of interest. Once a time range is selected, the Map View will
update to show the corresponding uncertainty density map.

C. Map View

Map View allows users to explore the spatial distribution
of uncertainty (Fig. 7 (d)). The view adopts a sequential

continuous colormap from white to blue to encode continuous
uncertainty values estimated by KDE within a given time
interval (Sec. V-A.1). Since the ranges of uncertainty density
at different time intervals vary greatly, using a consistent scale
for map views at all time intervals is not feasible. We choose
to adapt the scale to fit the density range at each time interval.
To remind users that the scale of colormaps is different at dif-
ferent time intervals, we put an additional progress bar beneath
the colormap legend to indicate the current range within the
global range; see Fig. 7 (d) for example. Moreover, we also
highlight the three-level uncertainty contours, with colors
corresponding to the color legend used in the Temporal View.

In addition to contour map, Map View also enables
point-based visualization of stop arrival uncertainty (Fig. 7
(d1)) or route connections (Fig. 7 (d2)). When displaying the
stop arrival uncertainty, we compute arrival time uncertainty
for each stop per bus route and adopt the Viridis colormap for
visual encoding of uncertainty values. For route connections,
we adopt varying hues for different routes, and highlight
selected stops by enlarging the dots. In both cases, the uncer-
tainty density map will be disabled, allowing users to observe
the spatial context. Users can interactively switch between the
modes to meet different analysis requirements.

D. Trip View

Trip View (Fig. 7 (e)) visualizes the trip-level uncertainty
with a given route. It consists of two sub-components:
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frequency histogram (Fig. 7 (e1)) showing the departure
frequency per hour by barchart; and graphical schedule
(Fig. 7 (e2)) visualizing operation uncertainty for each trip
through Marey’s graph. Specifically, frequency histogram is
a finer-grained visualization of departure frequency sparkline
presented in Route List view. From this view, we can observe
that there are typically more trip frequencies in the morn-
ing and evening peak hours, and trips seldom operate after
21:00. In the graphical schedule view, x-, y-axis indicate
the operation time in one day and the stations along the
route, respectively. Thus, each trip can be presented by a
polyline connecting a sequence of dots indicating the temporal
information to reach a specific stop. To visualize the stop-level
uncertainty along a route, we use Viridis sequential colormap
and size to double-encode the uncertainty value with each
given stop, as measured by standard deviation, e.g., the point
with the lighter color and smaller size represents a stop with
lower uncertainty.

E. Stop View

Stop View (Fig. 7 (f )) lists basic information of the selected
stops with a sequence of widgets, to facilitate stop-level
uncertainty exploration (R3.3). The stop id is shown at the
head of each widget. The number of routes passing through
this stop, the current route id, the order of the stop in the route
and the average uncertainty of this stop are also shown.

F. User Interaction

MetroBUX provides a series of user interactions to meet
the requirements of spatio-temporal, and route-, trip- and
stop-level analysis of bus operation uncertainty, including:

• Animation. MetroBUX provides users with a quick
overview of the spatio-temporal changes of uncertainty.
Users can click the play button to start the animation.
The Map View will display the corresponding Uncertainty
Density Map one by one. Users also can pause and replay
the animation.

• Selection. Users can select a specific time period of
interest from Temporal View, and Map View will show the
corresponding uncertainty density map (R4.1). If users
are interested in some routes, they can select routes
from Route List view and compare routes through Map
View and Trip View. Users can also select stops in Map
View and Trip View. The selected stop’s details will be
displayed in Stop View, and a route connection view
formed by all lines passing through the selected site will
be displayed in Map View.

• Filtering. Users can filter a subset of stops in the Map
View with a Lasso tool. Upon filtering, Map View will
display stops in the selected region and the stops’ colors
map the average uncertainty of all routes passing through
the stop at the time period (R4.1). Route List view lists
all routes that cross this region.

VII. EVALUATION

We conduct a comprehensive assessment on MetroBUX,
including three case studies exploring bus arrival time uncer-

Fig. 8. Case 1: identifying periods and regions of high uncertainty.
Corresponding density maps for the chosen time periods in Temproal View
are presented below.

tainty from different perspectives (Sec. VII-A - Sec. VII-C),
and feedback from three independent experts (Sec. VII-D).

A. Study 1: Identify Periods and Regions of High Uncertainty

The traffic congestion status is directly correlated to the
uncertainty of bus arrival time, which shows various patterns
in both spatial and temporal dimensions, as described in R2.1
and R2.2. In this study, we use MetroBUX to identify periods
and regions of high uncertainty, as illustrated in Fig. 8. The
temporal view (Fig. 8-top) depicts that the morning peak hours
ranging from 8:00 to 10:30 and evening peak hours from 18:00
to 19:30, have three levels of colors, indicating their high
uncertainty. Also, the three nested levels share a joint center for
most of the day, and there are no significant fluctuations. This
indicates that the corresponding region of high uncertainty
exists for most of the day, as discussed in Sec. V-B.

Based on the observation, we select three typical timestamps
to explore the spatial features: 9:00, 18:30 and 0:00, which
are illustrated in Fig. 8 (a,c,d), respectively. The first two
timestamps are peak hours, whose uncertainty density distri-
butions are very close, particularly in the region of high-level
uncertainty. By zooming in the Map View (Fig. 8 (b)), we find
many sites featuring a mass passenger flow within the region,
such as Shenzhen University, Nantou Ancient Town, Shenzhen
Nanshan People’s Hospital, and Coastal City Shopping Center.
In addition, the common region of high uncertainty disappears
at 0:00, while three branches appear simultaneously. Through
inspecting spatial features in detail, we find that all three
uncertainty regions have facilities that still operate at midnight,
including a logistic center, the Shenzhen Luohu People’s
Hospital, and the Shekou Cruise Home Port. There are 24-
hour bus routes to commute late-night workers at the logistics
center and travelers at the cruise port.

Insights From Expert: MetroBUX efficiently troubleshoots
traffic congestion by identifying peak hours and areas with
high uncertainty within a district. To address these congestion
challenges, our collaborating expert CR identified potential
solutions by enhancing the frequency of bus services in the
district, as shown in Fig. 8 (b). This would involve increasing
the number of buses operating on existing routes during peak
hours, thereby offering commuters additional transit options.
Furthermore, introducing a new circuit line connecting the four
stops with the highest uncertainty could distribute the transit
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Fig. 9. Case 2: comparing route- and trip-level uncertainty. Route views of both up and down route M5613 show trip-level uncertainty variations, including
temporal difference and propagation of uncertainty along a route, and also differences between the routes that indicate tidal phenomenon.

load more evenly, which distributes the passenger load across
multiple routes.

B. Study 2: Compare Route- and Trip-Level Uncertainty

In this case study, we use MetroBUX to make a comparison
of both trip-level uncertainty within one bus route (R3.2), and
route-level uncertainty between different routes (R3.1). Fig. 9
shows a selected route M5613 which passes through several
amusement parks and scenic spots. Owing to the well-marked
string of large points, we can first identify the morning/evening
peak hour (blue background) in both up and down route
views after browsing all bus trips along the time dimension
(Fig. 9 (b & c)). We observe the bus trips show a progressive
increase of uncertainty following stop order in a route, as the
node sides become bigger and darker. This demonstrates the
propagation of bus arrival time uncertainty along bus routes.
The occurrence of bus bunching tends to increase at these
nodes with darker colors and bigger sizes, especially in the up
direction’s evening peak hours.

Then we try to identify directional differences by comparing
the bus trips in up and down directions, as shown in Fig. 9
(b & c)). We find an interesting time range, between 10:00
and 12:00, when the uncertainty level is relatively low in the
up direction, while the down direction shows much higher
uncertainty across the routes, as marked with red background.
Such occurrence conforms to one of the features of the typical
tidal phenomenon [65]. However, both up and down directions
of routes reveal evenly distributed uncertainty between 14:00
and 16:00, which slightly deviates from the definition of the
tidal phenomenon that assumes the condition of the evening
should appear opposite to the morning. We also notice that the
ending stop of the down direction is close to two famous play-
grounds: Happy Valley and Window of the World. Depending
on the function of these venues, a great number of individuals
visit there in the morning, and some arrive or depart in the
afternoon, leading to a differentiated tidal phenomenon, as CR
explained.

Fig. 10. Case 3: understanding reasons for high uncertainty. The bus stops
with high uncertainty show a common feature of many routes passing through.

Insights From Expert: MetroBUX allows analysts to easily
identify the tidal phenomena and the bus bunching incidents,
and further analyze their causes as tourists commute between
attractions. Based on the observations from this study, CR
suggested two primary strategies to counter these challenges.
First, the operator can create dedicated routes that serve solely
tourist attractions, thereby reducing potential congestion along
these paths. The second approach involves adjusting the signal
light timings during peak hours for these routes, increasing
the duration of green lights while reducing red light intervals.
This adjustment aims to expedite bus operations and prevent
bus bunching.

C. Study 3: Understand Reasons for High Uncertainty

In this case, MetroBUX is used to conduct fine-grained gran-
ularity analysis of reasons for high bus operation uncertainty
at trip level (R3.2). As shown in Fig. 10, we first delineate a
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customized region with the lasso tool. All regional stops have
a similar spatial context since the region is small. However,
the stops still show large variations in arrival time uncertainty.
The stops with high uncertainty are marked in dark colors,
while those in low uncertainty are in light colors. By plotting
stops with high uncertainty, one can notice that most of these
stops (Fig. 10 (a & b)) have multiple routes passing through.
For instance, stop a with the greatest uncertainty 823.9 has
the most number of seven routes. A possible reason is that
many people and buses will pass through the transfer stop,
which will likely cause road congestion and increase the stop’s
uncertainty. In comparison, stop c (Fig. 10 (c)) is simple with
only one route passing through, and its uncertainty is small.
Moreover, one can notice that if two stops are close by and
share the same routes, then the stop are likely to have similar
uncertainty, which could be demonstrated in the uncertainty
values of stops a &b. This is probably because of the delay
propagation effect along the same route.

Insights From Expert: The phenomenon of uncertainty prop-
agation becomes particularly noticeable along stops a & b,
both of which are located at busy intersections, which expe-
rience a high number of passengers and vehicles. A common
presumption is that the uncertainty of a stop would correlate
with the number of routes traversing it, it is interesting to note
that stop b has a similar level of uncertainty as stop a, despite
having two fewer routes. To alleviate the pressure on stop b,
CR suggested to redistribute some of its routes to nearby stops
exhibiting lower uncertainty levels. As depicted in of Fig. 10
(top-left), the stop adjacent to stop c in green color and sharing
the same intersection with stop b can be a potential candidate.

D. Expert Interview

We further conducted interviews with five independent
domain experts (E1, E2, E3, E4 and E5) who are not the
authors of this work, to evaluate the performance of MetroBUX
and collect their feedback for improvement. E1 has worked
in the transportation domain, specifically in public transport
management and data analytics, for over ten years. E2 has
extensive experience in applying data-driven approaches to
intelligent transportation system. E3 is a senior researcher in
traffic visualization domain, mainly in traffic prediction and
risk monitoring. E4 is a mid-career researcher with expertise
in public transport planning and operation. E5 is a senior
manager in a bus company with over 15 years’ experience on
bus scheduling, timetabling and operation management. The
interviews were held in a semi-structured format. For each
interview, we first introduced the research background and how
we modeled bus operational uncertainty. Then, we explained
the interface of MetroBUX and demonstrated the case studies
through videos. At last, experts were asked to explore the
system freely. Each interview lasted for about one hour. Their
comments are summarized in four perspectives: applicability,
visual design, interaction design, and improvement.

1) Applicability: All the experts were impressed by the
comprehensive functionality of MetroBUX, which is “user
friendly” and “versatile”. They all acknowledged that the
system has been carefully designed and fulfills the require-
ments in terms of spatio-temporal analysis and multi-granular

exploration ranging from the stop-level to trip- and route-
level. The system is helpful for various high-level analytical
tasks, including bus bunching examination and reasoning.
Moreover, E1 and E3 praised the new findings that were not
expected, such as the tidal phenomenon in Case 2, which
is “very helpful to understand traffic dynamics and realize
intelligent traffic management”. E1 and E5 were keen to use
MetroBUX to “explore data from different cities and validate
its generalizability”. E4 was glad to see some advanced
analysis capabilities (e.g., bus bunching, tidal phenomenon)
in addition to the essential bus operational data analysis.

2) Visual Design: E1 and E2 spoke highly of the temporal
representation of uncertainty due to its overview and capacity
to show the relationships between regions of high uncertainty.
E1 commented that three-level contours in the density map are
enough to identify regions of interest. E2 expressed the same
opinion and further pointed out that “the hierarchical nesting
graph in temporal view make it easy to identify peak/non-peak
hour and some seemingly irrational but reasonable routes”.
For instance, the three branches at the end of the temporal
view as in Fig. 8 are specific regions that need more attention
at midnight. E3 mentioned that the size and color encoding in
trip view was straightforward and helpful to observe the prop-
agation of uncertainty along a route, “which helps to identify
the starting stop of uncertainty increase”. He also appreciated
the intuitive representation that helped recognize bus bunching
in the trip view. E4 acknowledged the considerate design of
visualizing and analysing the data from multiple dimensions
(e.g., stop-/route-/trip-/network level), which provided com-
prehensive understanding of bus operation. E5 appreciated
the visual design in a user-friendly and easy-to-understand
way, especially with the Map View and Trip View providing
complementary perspectives to inspect bus operation.

3) Interaction Design: The experts thought the interaction
design was helpful, especially for across-view linkage. “It’s
flexible in selecting a time interval of interest in temporal view,
and the map that shows corresponding detailed spatial infor-
mation will appear intermediately”, commented by E1. E2
and E3 were particularly interested in stop-level information,
and they praised the design of stop selection that shows all
routes passing through the same bus stop by simply clicking
the stop. Furthermore, E2 and E5 deemed it useful to zoom in
on Map view, showing fine-grained geographical features like
parks or shopping malls. The spatial context helps verify why
some stops present high uncertainty. E4 found it helpful to see
both the Map and Temporal views changing simultaneously
when the user dragged along the timeline. E5 acknowledged
the lasso tool to be flexible to allow manual selection of any
region of interest to analyse the covered bus stops.

4) Improvement: The experts also provided valuable com-
ments for further improvement. E2 and E3 suggested to
integrate real-time data into the system, thus it can both
analyze historical uncertainty and assist in bus arrival time pre-
diction for dynamic management, which significantly extends
its applicability. E1 mentioned that the What-if scenario anal-
ysis ought to be integrated into the current system, as it yields
individual contribution w.r.t. change input dynamically. For
instance, to analyze the impact of a specific route, the direct
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approach is to compare the current status with the output of
what if the route disappears. Moreover, E1 was impressed by
the route comparison demonstrated in case 2, and encouraged
us to further improve the usability by providing side-by-side
comparison views to make the exploration more convenient.
E4 suggested to develop a new function in the future to enable
various predictions (e.g., bus arrival time, bus arrival delay, bus
bunching) based on both historical data and real-time data. E5
would like to see an extension from standard bus services to
including more options of services such as on-demand bus and
shuttle bus services. Relevant bus routes can be categorized by
their service types.

VIII. LIMITATION AND FUTURE WORK

1) Limitation: There are two limitations in MetroBUX.
From application perspective, the current system does not
provide multiple Trip View simultaneously, hindering the
ability to compare different bus routes. When comparing route-
level uncertainty, “it is laborious to remember trip information
of the last route”, as commented by E1. Nevertheless, this
is due to the constraint of the limited display space, which
encloses spatial and temporal views to provide more informa-
tion from different perspectives. E1 understood the trade-off,
and expressed her vision of supporting route comparison more
effectively in the future. Second, from visualization perspec-
tive, the Hilbert curve transforms the points in a 2D field into
1D space while not completely considering the relation of
position, leading to spatial information loss to some extent.
Moreover, the proposed system employs KDE and density
map to reveal regional uncertainty distribution in the map
view. We have adopted an adjustable bandwidth based on stop
density to eliminate its contribution to the uncertainty density.
However, KDE, by nature, averages uncertainty density that
will omit individual differences among nearby stops.

2) Future Work: MetroBUX serves for exploring bus oper-
ation based on historical uncertainty analysis. To extend its
applicability, one promising direction is to integrate real-time
operational data to estimate the real-time traffic conditions
and inform real-time decision making. CR, E1 and E4 also
expressed the vision of integrating simulating or prediction
models into the current system, which will enable users
to conduct what-if scenario analysis. E1 and E5 expressed
interest in the point, as many arrival time prediction models
treat individual routes separately, which cannot capture the
effect of other routes. E1 expects the system to confirm
the observation further. Additional geographical factors like
population density and land use information can be added
to explore the cause of arrival time uncertainty. Moreover,
as mentioned in the limitation, we plan to add functionality
with stop-/route-specific assessment by comparison of before
and after removal/addition of a single stop or route. Such
flexible functionality can assist users in detecting and verifying
the influence of each specific stop or route, contributing to
a more comprehensive understanding and management of the
bus system. Last, incorporating passenger demand information
(e.g., origin-destination distributions and patronage at each
bus stop/route) into the system will be helpful to understand
the level of service from both supply and demand sides.

In addition to seeking additional information, we would also
like to explore ways to maximize the utilization of the existing
data, such as filtering out anomalies that cause significant
fluctuations in time reliability. In the future, we will continue
to refine the system and subsequently extend its usage to a
broader user base. In this way, we can gathere feedback to
enhance the effectiveness of our system.

IX. CONCLUSION

In this work, we propose MetroBUX, a visual analytics tool
to explore uncertainty inherent in bus operation. MetroBUX
makes threefold contributions including multi-granular uncer-
tainty modeling, integrated spatio-temporal visualization
design, and a multi-view interface complemented with
user-friendly interactions. Specifically, the system supports
the exploration of bus operation uncertainty, including
spatio-temporal investigation and hierarchical analysis, namely
identifying regions of high uncertainty, comparing routes of
divergent behavior, inspecting trips within a route, and explor-
ing stops in the bus route network. A series of case studies
demonstrate our system’s efficiency towards the detail-oriented
exploration of uncertainty, which is confirmed by domain
experts in collected feedback.
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