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• DL models are often criticized for being overly complex and lacking interpretability.
• The performance of DL models is highly sensitive to the representation of time-series data.
• Representation learning becomes increasingly popular.

Introduction
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How to intuitively choose 
the appropriate time-series 
representation for the 
forecasting task?



4

Model
• Limited to single numeric metric, such as 

RMSE.
• Inadequate for uncovering relationships 

among variables, representations and 
predictions.
• The lack of interpretability of DL models.

Challenge
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Visualization
• Multivariate variables, diverse transformation 

methods and large-volume time-series data.
• Potential overlap issues arising from the 

sliding window mechanism.
• Presenting both explanation and prediction 

metrics.



Analytical Tasks
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T2. Representation-level
• T2.1 Compare different representations
• T2.2 Analyze the association between representations & variables
• T2.3 Analyze the association between representations & predictions

T3. Prediction-level • T3.1 Overview the overall patterns of predictions
• T3.2 Detect the prediction outlier

T1. Variable-level • T1.1 Examine the details of variables
• T1.2 Identify associations among variables
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Overview
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Transformation Methods
• Smoothing
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• Sampling
Sliding windows 



Overview
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Coordinated multiple views
• Variable Inspector View
• Representation View
• Prediction Comparator View
• Temporal View



Related Work
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Counterfactual explanations reveal what changes in input alter the outcome of a DL model
• What-If tool [Wexler et al., 2020]
• Partition methods and scales for deep traffic prediction [Zeng et al., 2020]
• DECE [Cheng et al., 2020]

[Wexler et al., 2020] [Cheng et al., 2020][Zeng et al., 2020]

– Counterfactual Explanation



Related Work
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Existing visualizations, however, has limitations in:
• The presenting of two-dimension metrics.
• The extensive range of transformation methods.
• Overlap issues arising from sliding window mechanism.

Common visualization methods with time-series data:
• Vertical position or area to encode values: horizon graph [Saito et al,. 2005], stacked 

graph [Byron and Wattenberg, 2008].
• Pixel-wise elements: heatmaps [Lammarsch et al,. 2009], sparkboxes [Oppermann et al,. 

2021], heat stripes [Burch et al,. 2009].

– Time-series Visualization 



Visualization
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Visualization
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Profile View



Visualization
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Variable Inspector View

[Variable, Representation]



Visualization
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Temporal View

[Variable, Representation]



Visualization
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Representation View

[Representation]



Visualization
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Prediction Comparator View

[Representation, Prediction]



Variable inspector view
• To support the exploration of relationships between a feature space of continuous or 

discrete input variables (T1.2) and the target variable (T2,2) 
• A partition-based correlation matrix
• Mosaic plots to overview local relationships of
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• Pair-wise variables (multivariate) - Right
• Representations (univariate) - Left



Temporal View
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• To visualize the details of different time series representations for univariate data (T2.1)
and variables for multivariate data (T1.1).

• Horizon graphs for 
the context information

• A line chart for the details



Representation view

Introduction Related Work Visualization Case Study Conclusion 19

• To compare different representations (T2.1), and 
analyze the association between representations 
& predictions (T2.3).

• Explanation Metric

• Performance Metric
• Value-suppressing 

uncertainty palette (VSUP)

• aHorizon juxtaposed 
bivariate stripes

VSUP



These designs are 
less scalable than

juxtaposed bivariate stripes.

Representation view

Introduction Related Work Visualization Case Study Conclusion 20

🔴
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🔴

🟢juxtaposed bivariate stripes.

- Alternative Design



Prediction comparator view
• To reveal the relationship between explanation metrics and performance metrics (T2.3) and

subsequently analyze prediction outliers (T3.1)
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• X-Axis: Explanation Metric
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• Y-Axis: Performance Metric
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Case 1: univariate sunspots forecasting
Dataset: Sunspots
• Time: Jan. 1, 1818 – Nov. 30, 2022
• Periodicity (month): 1, 3, 6, 13

Relationship & Insight

• The highest prediction accuracy: 
WMA-13/Sk-3

• The largest training error:           

MA-3/Sk-1

• Outlier Period:

2009 is the period of minimum solar 
activity and the model does not capture 

the weakening of sunspot activity. 
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WMA-13/Sk-3

MA-3/Sk-1

2009



Case 2: multivariate PM2.5 forecasting
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Dataset: Air pollution
• Time: Jan. 1 00:00, 2013 – Mar. 31 23:00, 2014
• Periodicity (hour): 1, 6, 12, 24
• Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Relationship & Insight

• A negative correlation
Pm2.5 & Temperature



Case 2: multivariate PM2.5 forecasting
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Dataset: Air pollution
• Time: Jan. 1 00:00, 2013 – Mar. 31 23:00, 2014
• Periodicity (hour): 1, 6, 12, 24
• Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Relationship & Insight

• A negative correlation
Pm2.5 & Temperature

• A positive correlation

Pm2.5 & Relative Humidity



Case 2: multivariate PM2.5 forecasting
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Dataset: Air pollution
• Time: Jan. 1 00:00, 2013 – Mar. 31 23:00, 2014
• Periodicity (hour): 1, 6, 12, 24
• Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Relationship & Insight

• A negative correlation
Pm2.5 & Temperature

• A positive correlation

Pm2.5 & Relative Humidity

• Special Case

Exhibiting elevated Pm2.5 levels with high-speed 
south winds may stem from significant pollutant 

sources in the southern areas



Case 2: multivariate PM2.5 forecasting
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Dataset: Air pollution
• Time: Jan. 1 00:00, 2013 – Mar. 31 23:00, 2014
• Periodicity (hour): 1, 6, 12, 24
• Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Relationship & Insight

• Outliers Case
Jan. 30 2014 – Feb. 2 2014

• Reason

Fireworks of Chinese New Year

• Explanation

Outliers cased by specific events are difficult to be 
captured and learned by models.

MA-6/Sk-24

MA-12/Sk-24

MA-24/Sk-24

WMA-6/Sk-24

Jan. 30 2014 
–

Feb. 2 2014



Conclusion
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• Providing useful hints for selecting appropriate transformation methods.
• Explaining why models perform poorly.Analysis

• Highlighting the significant potential of counterfactual explanations 
combined with visual analytics in advancing the field of data 
representation learning. 

Domain

• The combination of counterfactual explanations with visual analytics.
• The exploration of both univariate and multivariate data.Feedback
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