

TimeTuner: Diagnosing Time Representations for Time-Series Forecasting with Counterfactual Explanations

Jianing Hao

Qing Shi

Yilin Ye

Wei Zeng

Agenda

- Introduction
- Related Work
- Visualization
- Case study
- Conclusion

Introduction

- DL models are often criticized for being overly complex and lacking interpretability.
- The performance of DL models is highly sensitive to the **representation** of time-series data.
- **Representation learning** becomes increasingly popular.

Challenge

Model

- Limited to single numeric metric, such as RMSE.
- Inadequate for uncovering relationships among variables, representations and predictions.
- The lack of interpretability of DL models.

Introduction

Visualization

- Multivariate variables, diverse transformation methods and large-volume time-series data.
- Potential overlap issues arising from the sliding window mechanism.
- Presenting both explanation and prediction metrics.

Related Work Visualization

Case Study

Analytical Tasks

T1. Variable-level

- **T1.1** Examine the details of variables
- **T1.2** Identify associations among variables

T2. Representation-level

- **T2.1** Compare different representations
- **T2.2** Analyze the association between representations & variables
- **T2.3** Analyze the association between representations & predictions

T3. Prediction-level

- T3.1 Overview the overall patterns of predictions
- **T3.2** Detect the prediction outlier

Related Work

Visualization

Overview

VIS 2023

Introduction

Visualization

Case Study

Related Work

Overview

* VIS 2023

Transformation Methods

Overview

Coordinated multiple views

- Variable Inspector View
- **Representation View**
- **Prediction Comparator View**
- **Temporal View**

Stage 2: Interactive Exploration

Related Work

Visualization

Horizon Graphs

Related Work – Counterfactual Explanation

Counterfactual explanations reveal what changes in input alter the outcome of a DL model

- What-If tool [Wexler et al., 2020]
- Partition methods and scales for deep traffic prediction [Zeng et al., 2020]
- DECE [Cheng et al., 2020]

Related Work – Time-series Visualization

Common visualization methods with time-series data:

- Vertical position or area to encode values: horizon graph [Saito et al,. 2005], stacked graph [Byron and Wattenberg, 2008].
- Pixel-wise elements: heatmaps [Lammarsch et al,. 2009], sparkboxes [Oppermann et al,. 2021], heat stripes [Burch et al,. 2009].

Visualization

Case Study

Existing visualizations, however, has limitations in:

- The presenting of two-dimension metrics.
- The extensive range of transformation methods.
- Overlap issues arising from sliding window mechanism.

Introduction Related Work

VIS 2023 Introduction Related Work

Visualization

Case Study

Conclusion

VIS 2023 Introduction

Visualization

Case Study

Related Work

VIS 2023

Introduction

Related Work

Visualization

[Variable, Representation]

Case Study

13

VIS 2023

Introduction

[Variable, Representation]

Case Study

Visualization

Related Work

VIS 2023

Related Work

Introduction

Visualization

Case Study

Conclusion

VIS 2023

Introduction

[Representation, Prediction]

Case Study

Related Work

Visualization

16

Variable inspector view

- To support the exploration of relationships between a feature space of continuous or discrete input variables (T1.2) and the target variable (T2,2)
- A partition-based correlation matrix
- Mosaic plots to overview local relationships of –

Representations (univariate) - Left

Pair-wise variables (multivariate) - Right

Temporal View

 To visualize the details of different time series representations for univariate data (T2.1) and variables for multivariate data (T1.1).

Value

Introduction

• A line chart for the details

 Horizon graphs for the context information

Related Work

Visualization

Case Study

Representation view

 To compare different representations (T2.1), and analyze the association between representations & predictions (T2.3).

Explanation Metric

Related Work

Visualization

Case Study

Prediction comparator view

- To reveal the relationship between explanation metrics and performance metrics (**T2.3**) and subsequently analyze prediction outliers (T3.1)
- X-Axis: Explanation Metric

$$CORR. = \frac{n \times \sum XY - \sum X \times \sum Y}{\sqrt{(n \times \sum X^2 - (\sum X)^2) \times (n \times \sum Y^2 - (\sum X)^2)}}$$

SHAP value:
$$y_i = y_{base} + f(X_i, 1) + f(X_i, 2) + \cdots$$

R

Introduction

Y-Axis: Performance Metric

$$MSE = \sqrt{\frac{1}{N} \sum_{i=1}^{n} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N}$$

Related Work Visualization

Case Study

120 RMSE

110-

90 80

60

50 40 30

20 -10-0.0

Case 2: multivariate PM2.5 forecasting

Related Work

Visualization

Dataset: Air pollution

- Time: Jan. 1 00:00, 2013 Mar. 31 23:00, 2014
- Periodicity (hour): 1, 6, 12, 24
- Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Introduction

Relationship & Insight

• A negative correlation *Pm2.5 & Temperature*

VIS 2023

Case Study

Case 2: multivariate PM2.5 forecasting

Related Work

Visualization

Dataset: Air pollution

- Time: Jan. 1 00:00, 2013 Mar. 31 23:00, 2014
- Periodicity (hour): 1, 6, 12, 24
- Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Introduction

Relationship & Insight

- A negative correlation *Pm2.5 & Temperature*
- A positive correlation
 Pm2.5 & Relative Humidity

Case Study

24

Case 2: multivariate PM2.5 forecasting

Related Work

Visualization

Dataset: Air pollution

- Time: Jan. 1 00:00, 2013 Mar. 31 23:00, 2014
- Periodicity (hour): 1, 6, 12, 24
- Variable: Pm2.5, Temp, Ph, Psfc, Wnd_dir, Wnd_spd

Relationship & Insight

- A negative correlation *Pm2.5 & Temperature*
- A positive correlation
 Pm2.5 & Relative Humidity
- Special Case

Exhibiting elevated *Pm2.5* levels with *high-speed south winds* may stem from significant pollutant sources in the southern areas

Introduction

Case Study

Related Work

Visualization

Case Study

Conclusion

Conclusion

Feedback

- The combination of counterfactual explanations with visual analytics.
- The exploration of both univariate and multivariate data.

Analysis

- Providing useful hints for selecting appropriate transformation methods.
- Explaining why models perform poorly.

Domain

• Highlighting the significant potential of counterfactual explanations combined with visual analytics in advancing the field of data representation learning.

Related Work

Introduction

Visualization

Thank you!

Jianing Hao

Project Homepage

Email: jhao768@connect.hkust-gz.edu.cn

Please feel free to contact me if you have any questions.

HKUST CIVAL

Jianing Hao Homepage